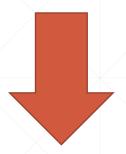


The influence of innovative technologies on the antioxidant capacity, oxidation stability and concentration of antioxidants in virgin olive oils

Katarina Filipan^{1*}, Klara Kraljić¹, Mirella Žanetić², Maja Jukić Špika², Mia Ivanov¹, Tomislava Vukušić Pavičić¹, Višnja Stulić¹, Zoran Herceg¹, Marko Obranović¹, Sandra Balbino¹, Dubravka Škevin¹

¹University of Zagreb, Faculty of Food Technology and Biotechnology ²Institute for Adriatic crops and Karst Reclamation, Split



Introduction

Innovative technologies

Olive fruit variety

• to determine the influence of flash thermal treatment (FTT), ulstrasound (US), pulsed electric field (PEF) and their combinations used as pretreatments to malaxation or without malaxation (WM) on the antioxidant capacity (AC), oxidation stability (OSI) and the concentration of antioxidants of virgin olive oils (VOOs) of the Levantinka variety.

Materials and methods

1.) VOO production:

CLEANING AND WASHING

CRUSHING

INNOVATIVE TECHNOLOGY TREATMENT

(MALAXATION)

CENTRIFUGAL EXTRACTION

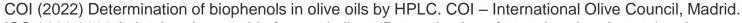
OIL STORAGE

Materials and methods

	Parameters of innovative technology applied				
Sample	FTT	US		PEF	
	Temperature	Ultrasonic bath power	Treatment time (min)	Electric field strength (kV/cm)	Treatment time (s)
Control	7	1		1	
FTT	19.5 °C	/	/	/	/
US	/	576 W	5	/	/
PEF	/	/	/	2	90
FTT+US	19.5 °C	576 W	5	/	/
US+PEF	/	576 W	5	2	90
FTT+PEF	19.5 °C	/	/	2	90
FTT+US+PEF	19.5 °C	576 W	5	2	90
FTT+US without malaxation (WM)	19.5 °C	576 W	5	/	/
US+PEF WM	1	576 W	5	2	90
FTT+PEF WM	19.5 °C	/	/	2	90
FTT+US+PEF WM	19.5 °C	576 W	5	2	90

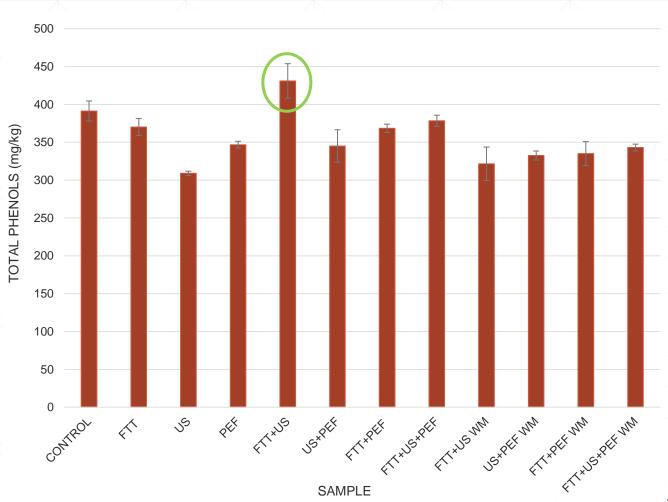
Materials and methods

2) Antioxidant capacity

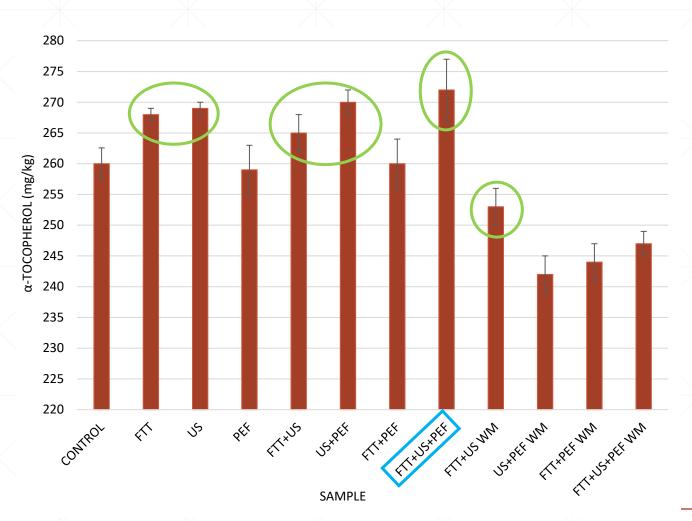


3) Oxidation stability index

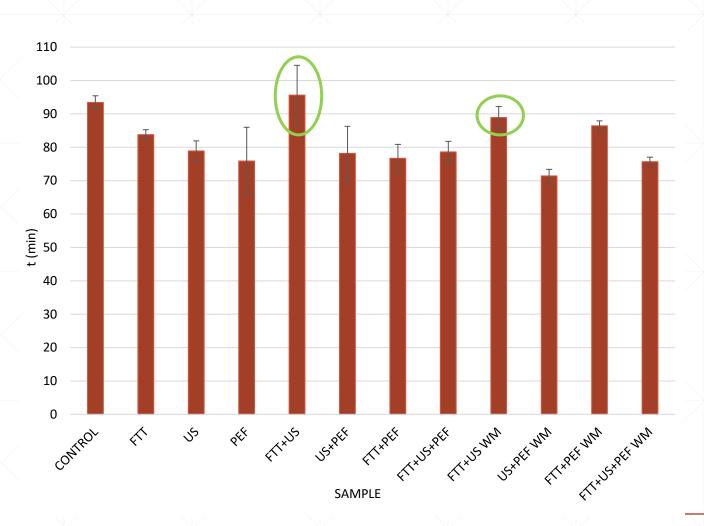
4) α-tocopherol and phenols concentration



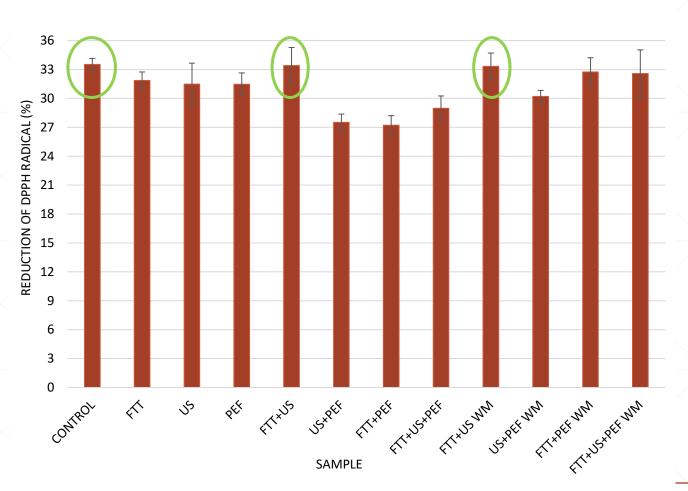
ANOVA for total phenols		
source of variation	p value	level of significance
innovative technology	0.000	extreme
malaxation	<0.0001	extreme
innovative technology* malaxation	<0.0001	extreme



	ANOVA for α-tocopherol			
	source of variation	p value	level of significance	
	innovative technology	<0.0001	extreme	
	malaxation	<0.0001	extreme	
	innovative technology* malaxation	<0.0001	extreme	



ANOVA for OSI			
source of variation	p value	level of significance	
innovative technology	<0.0001	extreme	
innovative technology* malaxation	0.005	significant	



ANOVA for AC			
source of variation	p value	level of significance	
innovative technology	<0.0001	extreme	
malaxation	<0.0001	extreme	
innovative technology* malaxation	0.009	significant	

Conclusions

- the increase in α-tocopherol concentration occurred only in the samples with US and with FTT as a separate technology
- the concentration of phenols and OSI increased only in the sample FTT+US
- the highest AC was recorded in the control sample
- the combination of FTT+US can be recommended
- samples without malaxation showed lower concentration of α-tocopherol and phenols and also lower OSI but higher AC compared to the samples with malaxation
- malaxation phase cannot be replaced by any combination of innovative technologies

